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Introduction 

Alternative splice products of different genes have been identified in the brains of 

animals models of experimental parkinsonism and confirmed in Parkinson’s disease (PD) 

patients (Tekumalla et al., 2001).  Such variants are produced in different proportions in 

healthy individuals, which means that alternative splice variants could be useful 

biomarkers of the disease state.    During this past year we have identified several 

changes in the ratios of splice isoforms of mRNA transcripts in the brain and blood of 

mice treated chronically or acutely with MPTP.  We have published or submitted for 

publication some of these findings and in addition, are carrying out gene expression 

studies to localize the aberrant spice products.  

 

Body 

We have made good progress during the final year of this grant on the mouse work but 

were disappointed that we were unable to recruit patients for the human blood study.   

We outline our key accomplishments under each Objective of the original Statement of 

Work.  

 

Objective 1: To identify abnormal splice variants of genes involved in the development 

and progression of Parkinsonism in the brain and blood of chronic rodent models of PD. 

 

We have completed all parts of Objective 1 in the Statement of Work.  The new data 

obtained over the past year includes splice variants that were quantified and normalized 

to 18S rRNA.  By quantifying in this manner we are able to examine the steady state 

levels of RNA, taking into account changes that occur due to transcription and RNA 

stability, in addition to those that occur because of a dysregulation of splicing.  We now 

express the data as splice variant1/ splice variant2, splice variant1/18S rRNA and splice 

variant2/18S rRNA.  We summarize the sequences that we tested in table 1. 
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Table 1.  sequences tested on mouse brain and blood 

PCR  
Primer Sequence 
Ache-R:  Forward Primer  5’ CCCCAATGACCCTCGAGACT 3’ 
Ache-R:  Reverse Primer  5’ CCTCCTTCCAACCCTTGCC 3’ 
Ache-S:  Forward Primer  5’ TCTTTGAACACCGTGCCTCC 3’ 
Ache-S:  Reverse Primer  5’ CTCCGCCTCGTCCAGAGTAT 3’ 
Ania6/6a: Reverse Primer 5’ GAA AGC GAA CAA AGA CAT TGG TT 3’ 
Ania6: Forward Primer 5’ TCA AGG CAG AGA GGA GGG TG 3’ 
Ania6a: Forward Primer 5’ TGC TGT GGG GAA GTG GTT AG 3’ 
CD40 (Var. 1): Forward Primer 5’ GCT CAG CAC ACG CCC TGT A 3’ 
CD40 (Var. 1): Reverse Primer 5’ ATA GAG AAA CAC CCC GAA AAT GG 3’ 
CD40 (Var. 2): Forward Primer 5’ GCT ATG GGG CTG CTT GTT GAC AG 3’ 
CD40 (Var. 2): Forward Primer 5’ GCC AGG GAT ACA GGG CGT GTG 3’ 
DJ1: Forward Primer 5’ AAT GAT TTG TCC AGA TAC CAG TC 3’ 
DJ1: Reverse Primer 5’ TTT TCT TTT TCT CTC TCC CTT CT 3’ 
Drd2: Forward Primer 5’ ATT GTC TGG GTC CTG TCC TTC A 3’ 
Drd2: Reverse Primer 5’ TCT GGT TTG GCA GGA CTG TCA G 3’ 
FAIM: Forward Primer 5’ GAA GGC AGT AGG ATG CTG GG 3’ 
FAIM: Reverse Primer 5’ TAC AAA CTC GCC CGC TGT CT 3’ 
FGFR1 IIIb: Reverse Primer 5’ TAC ACA CAT ACT CCC CGC TCT 3’ 
FGFR1 IIIc: Reverse Primer 5’ CTT CCA GAA CGG TCA ACC AT 3’ 
FGFR1: Forward Primer 5’ TGC CTG CCA ACA AGA CAG T 3’ 
FosB: Forward primer  5' AAAAGGCAGAGCTGGAGTCG 3' 
FosB: Reverse primer  5' GTACGAAGGGCTAACAACGG 3' 
Gabrg2: Forward Primer 5’ TCT CTG CCC AAG GTC TCC T 3’ 
Gabrg2: Reverse Primer 5’ TGC CAT CCA AAC ACT CAT AG 3’ 
GNAS: Forward Primer 5’ GCA GCG TGA GGC CAA CAA AAA GAT 3’ 
GNAS: Reverse Primer 5’ CCA CTC TGA ACT GGT TCT CGG GGT 3’ 
Gria2 (Flip): Forward Primer 5’ TCT CCT CCT ACA CGG CTA ACT 3’ 
Gria2 (Flip): Reverse Primer 5’ GCA AGA TTT ACT GGG GTT CT 3’ 
Gria2 (Flop): Forward Primer 5’ CTC CTC CTA CAC GGC TAA CTT A 3’ 
Gria2 (Flop): Reverse Primer 5’ CCG CAC TCT CCT TTG TCG TA 3’ 
Grin1: Forward Primer 5’ ATG TGA CTC CCG CAG CAA TGC 3’ 
Grin1: Reverse Primer 5’ ACC AGG AAG GCT GCC AGG TTG 3’ 
Homer1 Long: Forward Primer 5’ GCA TTG CCA TTT CCA CAT AG 3’ 
Homer1 Long: Reverse Primer 5’ TGC CCC TCC AGG TCT TTA T 3’ 
Homer1 Short: Forward Primer 5’ ATA AAT AGC ACC ATC ACA CCA AA 3’ 
Homer1 Short: Reverse Primer 5’ CTG AAA CCC AAA TGA CTT CCA 3’ 
NDUFS4: Forward Primer 5’ TGG GGC GAA GGG CAA TGG 3’ 
NDUFS4: Reverse Primer 5’ TGG AGA GGG GGT CAG CGG T 3’ 
OXR1: Forward Primer 5’ GAC CAC TTG TAT GCC TTC TTC AT 3’ 
OXR1: Reverse Primer 5’ TTG AGT TGA TGT CTT CCC TTG T 3’ 
PALM: Forward Primer 5’ GAG CAA AAG TCA GAA ACC TTG GTG 3’ 
PALM: Reverse Primer 5’ GCC TTG TGA ATG AGT TCG TCC A 3’ 
PSM4: Forward Primer 5’ GGA TGA GAT TCC AGC ACT GTC CG 3’ 
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PSM4: Reverse Primer 5’ ACC GAG GCG TTG GGC TTG AG 3’ 
RGS9 2: Forward primer  5' GGCAGCTGGAAGAAGAAGAGAA 3' 
RGS9-1: Forward primer  5' GATTCTTACGCACGCTATTTGA 3' 
 

 

Objective 2: To determine if the distribution of those splice variants found in rodent models of 

Parkinsonism correlate with regions in the brain that are affected in PD. 

 

Quantitative in situ hybridization (ISH) has been carried out on the striatum and 

midbrains of mice treated chronically MPTP.  In this work, we have completed studies of 

the splice variants of AChE and ANIA-6 (cyclin L1).   The data from these studies are 

being prepared for publication. 

 

Objective 3: To determine if the splice variants whose regulation is altered in rodent 

models are altered in the blood of PD patients compared to age-matched controls. 

 

We had IRB approval from the USAMRMC and from the two Universities with whom 

we collaborate for less than a year (9 months only).  No patients were enrolled during that 

time and therefore this study closed prematurely.  We are presently applying for further 

funding from private foundations and the NIH to set up a larger study of patient blood.  

 

Key Research Accomplishments: 

• Successfully extracted RNA from blood, brain (striatum and substantia nigra) and nasal 

epithelium of mice treated with MPTP, and quantified splice variants using TaqMan 

assays (Perkin-Elmer-Applied Biosystems) 

• Successfully correlated changes in splice variant ratios with the loss of dopaminergic 

neurons from the substantia nigra, poor performance on behavioral tests and dopamine 

levels in the striatum. 

• Gene Expression studies showed an increase in AChE-S gene expression in the striatum 

and a decrease in AChE-R mRNA in the substantia nigra after chronic MPTP treatment. 

 

Reportable Outcomes 

Published or submitted for publication: 
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• Potashkin JA, Meredith GE (2006) The role of oxidative stress in the dysregulation of 

gene expression and protein metabolism in neurodegenerative disease.  Antioxid Redox 

Signal, 8:144-151. 

• Potashkin JA, Kang UJ, Loomis PA, Jodelka FM, Ding Y, Meredith GE (2007) 

MPTP administration in mice changes the ratio of splice isoforms of fosB and 

rgs9. Brain Res 1182:1-10. 

• Potashkin JA, Kang UJ, Loomis PA, Ding Y, Jodelka FM, Meredith GE (2007) 

Dysregulation of AChE splicing in acute and chronic models of Parkinson’s disease.  

Eukaryotic RNA processing, Cold Spring Harbor, NY. 

• Meredith GE, Totterdell S, Potashkin JA, Surmeier DJ (2008) Modeling PD 

pathogenesis in mice: Advantages of a chronic MPTP model. Parkinsonism Relat 

Disord 14: S112-S115. 

• Meredith GE, Sonsalla PK, Chesselet M-F (2008) Animal models of Parkinson’s 

disease progression. Acta Neuropathol 115:385-398. 

• Potashkin JA, Loomis PA, Jodelka FM, Meredith GE (2008) Cyclin L1 splicing is 

dysregulated after MPTP treatment to mice.  Submitted. 

• Potashkin JA, Loomis PA, Jodelka FM, Meredith GE (2008) MPTP exposure 

alters expression of Ndufs4 variants in the mouse brain Submitted 

• Potashkin JA, Loomis PA, Jodelka FM, Meredith GE (2008) Dysregulation of AChE 

splicing in acute and chronic MPTP mouse models of Parkinson’s disease. In preparation. 

 

Conclusion 

The final year of this grant has seen the completion of splicing and gene expression 

studies in the brain and blood of the MPTP mouse model.  We were unable to enroll 

patients for the human study during the past 9 months.  However, we hope to obtain new 

funding to study the blood of newly diagnosed human PD patients in order to establish 

the transcripts that we identified in the mouse model as biomarkers of disease.    

 

References 
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striatum in Parkinson's disease. Biol Psychiatry 50:813-816. 
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Abstract 

Formidable challenges for Parkinson’s disease (PD) research are to understand the processes 

underlying nigrostriatal degeneration and how to protect the dopamine neurons. Fundamental 

research relies on good animal models that demonstrate the pathological hallmarks and motor 

deficits of PD. Using a chronic regimen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 

probenecid (MPTP/p) in mice, dopamine cell loss exceeds 60%, extracellular glutamate is 

elevated, cytoplasmic inclusions are formed and inflammation is chronic. Nevertheless, 

isradipine, an L-type calcium-channel blocker, attenuates the degeneration. These data support 

the validity of the MPTP/p model for unravelling the degenerative processes in PD and testing 

therapies that slow their progress.  
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1. Introduction 

Parkinson’s disease (PD) is characterized by progressive loss of dopamine neurons and terminals 

from the nigrostriatal pathway and by a slow onset of motor symptoms. To provide insight into 

the pathophysiological processes of this disease, animal models should mimic as many of the 

clinical features as possible. The loss of the dopaminergic pathway can be replicated in rodents 

using various surgical, toxic or genetic approaches. Over the past couple of decades, one 

neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), has become a widely used 

method for modeling PD. However, for most MPTP models, the loss of dopamine is rapid and 

not progressive, and the motor disability is often difficult to demonstrate, especially when tested 

some time after toxin application [1]. A model that shows great promise, particularly in its 

progressive nature, involves the administration of MPTP and an adjuvant, probenecid (MPTP/p), 

that blocks the rapid clearance of the toxin and its metabolites [2]. Chronic MPTP/p treatment 

produces many of the pathological hallmarks and motor deficits of PD, making it an excellent 

choice for studies of pathogenesis, for testing neuroprotective therapies and developing 

biomarkers to detect the disease presymptomatically [3, 4]. This review covers the key features 

of this model and discusses its applicability to neuroprotective strategies. 

 

2. Preparation of the chronic MPTP/p model 

Male C57/bl mice, initially weighing 20–24g, are injected with 10 doses of MPTP hydrochloride 

(25mg/kg in saline, s.c.) and probenecid (250mg/kg in tris-HCl buffer) over 5 weeks at 3.5-day 

intervals. Control mice are injected with vehicle (saline or probenecid) in the same volume and 

on the same schedule. Three days before treatment, and each week thereafter, mice are tested for 

coordination and rigidity using the grid test [1, 3, 5]. Briefly, mice are placed in the center of a 

wire mesh grid, which is then rotated 180 degrees to suspend them upside down. Mice are 

allowed to move freely on the grid and their movements are filmed for 60 s. Forepaw foot-faults 

and total forepaw steps are recorded for each of three trials and a ratio (foot-faults/total steps) is 

established per mouse. Data are pooled for each group and paired Student’s t-tests compare 

within-groups’ grid activity pre- and post-treatments, and unpaired t-tests compare between-

groups’ grid performance. 

After the final behavioral test, mice are perfused transcardially with fixative and their brains 

prepared for light (LM) or electron (EM) microscopy. For LM, adjacent sections are 

immunoreacted for tyrosine hydroxylase (TH), Mac-1 and alpha-synuclein. The total number of 
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TH-immunoreactive, Nissl-stained neurons and Mac-1-immunoreactive cells (microglia) are 

estimated with optical disectors (optical fractionator approach) using dedicated software 

(StereoInvestigator, Microbrightfield, Williston, VT). Inclusions are identified using LM, 

confocal microscopy and EM. Sections for EM are immunoreacted for TH and prepared for 

examination in a Philips 400 electron microscope. Mice were killed by cervical dislocation and 

decapitation and then striatal dopamine concentration is determined electrochemically 

(Coulochem II, ESA, Chelmsford, MA). 

 

3. Dopamine loss, motor dysfunction, inflammation and inclusion formation  

The chronic MPTP/p model shows a significant reduction in the number of neurons in the 

substantia nigra pars compacta (SNpc). Shortly after MPTP/p treatment, approximately 50% of 

dopamine neurons are lost, increasing to nearly 70% 3 weeks after toxin treatment (Table 1). 

Striatal dopamine levels are reduced by 90–93% within a week, and by 70–80% of the total at 3 

to 24 weeks after MPTP/p treatment [4]. The low level of striatal dopamine is matched by a 

significant loss of TH-immunopositive fibers throughout the caudate putamen, especially in 

central and medial parts [2]. Dopamine loss correlates well with motor deficits. As early as 3 

days post-MPTP/p treatment, mice show a significant disability on the grid and the impaired 

performance persists up to 6 months post-MPTP/p treatment. Typically, vehicle-treated mice 

perform significantly better (ratio of foot-faults/total steps: 0.036 ± 0.01) than MPTP/p-treated 

animals (0.167 ± 0.04; p < 0.001, Student’s t-test). 

 There is a strong inflammatory response in the SN 3 weeks after MPTP/p treatment 

(density of microglia for the MPTP/p group: 2.76 ± 0.04 x 104/mm2 versus vehicle 

[probenecid] group: 2.39 ± 0.09 x 104/mm2; p < 0.05, Student’s t-test). Reactive 

microglia with large cell bodies and short processes are also found after MPTP/p 

treatment and persist for months [6].  

 The formation of inclusion bodies has been demonstrated for several chronic MPTP models, 

but not for acute or subchronic models [7-11]. Presumably, the slow administration of MPTP/p 

can induce prolonged damage to mitochondria and precipitate alpha-synuclein toxicity, resulting 

in cytoplasmic accumulation of alpha-synuclein and ubiquitin proteins. For the MPTP/p model, 

inclusions have been identified in cell bodies and dendrites of TH-immunoreactive neurons as 

early as 2 to 3 weeks after toxin administration. These inclusions immunostain for alpha-

synuclein, DJ-1 and ubiquitin (Fig. 1 [7, 8]) and, at the EM level, are granular, contain lipid 
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droplets, proteinaceous deposits and parallel membranes (Fig. 2 [7]). Ultrastructurally, the 

granules have the appearance of lipofuscins or secondary lysosomes (Fig. 2), cellular organelles 

that accumulate with age but at a significantly faster rate in neurodegenerative disease [12]. In 

PD, lipofuscins are closely associated with lipid droplets and neuromelanin, and may be 

important for the development of Lewy bodies [12]. 

 

4. Cell death in the MPTP/p model  

MPTP intoxication rapidly and persistently depletes ATP and increases reactive oxygen and 

nitrogen species molecules that induce cell death pathways. In acute or subchronic MPTP 

models, less than half of the SNpc dopaminergic neurons are destroyed, whereas nigrostriatal 

degeneration with the chronic MPTP/p regimen is more extensive (Table 1 [2]). This is because 

striatal dopamine depletion peaks within 24 hours after a single dose of MPTP, but that loss is 

extended with MPTP/p, presumably due to the probenecid’s competitive block of active 

transport of the toxin at the kidney and blood-brain-barrier [2]. This means that more dopamine 

neurons die over time. The chronic MPTP/p model also reveals numerous pathological features, 

such as persistent inflammation, alpha-synuclein-positive inclusions, and aberrant elevations in 

extracellular glutamate (Meredith and Meshul, unpublished results), all of which would increase 

vulnerability to calcium (Ca2+) influx and excitotoxicity. Prolonged intervention with compounds 

that reduce Ca2+-dependent cellular stress could, therefore, be tested with this model. 

 

5. Neuroprotection 

Adult SNpc dopamine neurons are Ca2+-dependent autonomous pacemakers, the basal activity of 

which is driven by the relatively rare, voltage-dependent, L-type Ca2+ channel Cav1.3 [13]. 

Pacemaking elevates cytosolic Ca2+, and would therefore harm neurons that are energy-

compromised through mitochondrial stress (as in PD [12, 14]). If the Ca2+ dependence of 

pacemaking could be changed, perhaps through the blockade of Cav1.3, some protection may be 

afforded to dopamine neurons. We conducted in vivo experiments using mice administered 

isradipine, a potent L-type Ca2+ channel blocker, during treatment with MPTP/p. Mice were 

implanted with extended release pellets with biodegradable-carrier bound isradipine (60 days, 

3µg/g/day) or inert placebo pellets (Tocris, Ellisville, MO) 1 week before toxin or vehicle 

treatment. One week after treatment, mice were tested on the grid and, 24 hours later, euthanized 

and TH-immunoreacted so that Nissl-counterstained neurons in the SNpc could be counted. 
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Isradipine significantly improved performance compared to mice implanted with placebo and, 

although MPTP/p-treated mice with isradipine lost significantly more SNpc neurons than those 

treated with vehicle, isradipine attenuated the loss compared to MPTP/p-treated, placebo-

implanted mice (Table 1 [3]). Protection was not due to isradipine affecting MPTP metabolism, 

because brain 1-methyl-4-phenylpyridinium ion (MPP+) levels did not differ between toxin-

treated groups [3].  

 In conclusion, mice treated with MPTP/p exhibit many features of PD, including dopamine 

cell loss, motor deficits, inclusion formation and inflammation. The model is thus an attractive 

choice for testing neuroprotective strategies or for developing biomarkers for early detection of 

disease.  
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Table 1.  Stereological results for TH-immunoreactive, Nissl-stained neurons in the 
SNpc, including reference volume (Vr) and estimated total number of neurons. Data 
are derived from two experiments, separated below by double lines.  

 
 
Treatment 

 
 

N Vr ± SEM (mm3) 

Total number of 
neurons ± SEM 

(x 103) 

Coefficient 
of error 

  MPTP/p 8 0.164±0.003† 3.139 ± 0.12a 0.11 

  Probenecid  6 0.170±0.004 9.440 ± 0.11 0.09 

  Saline  5 0.178±0.008 9.672 ± 0.10  0.10 

  MPTP/p + placebo 4 0.186 ± 0.02† 3.669± 0.27a 0.10 

  MPTP/p + isradipine  7 0.185 ± 0.019 6.789± 0.56b,c 0.08 

  Saline + isradipine 5 0.193 ± 0.023 9.607 ± 0.3 0.07 
ap < 0.01 (Student’s t-test), significantly less than in vehicle-treated group(s). 
bp < 0.01 (Student’s t-test), significantly less than in saline/isradipine-treated group. 
cp < 0.001 (Student’s t-test), significantly greater than in MPTP + placebo group. 
†No significant difference between groups. 
 
 
Figures 

 
Fig. 1. Images of TH and alpha-synuclein immunoreactivity in the SNpc. (A) TH-

immunoreactive neurons, (B) alpha-synuclein-immunoreactive puncta (note the varicosities of 

alpha-synuclein terminals), and (C) merged image showing the alpha-synuclein-immunoreactive 

granular inclusions in TH-immunoreactive neurons. Scale bar in A is valid for A, B and C, and 

equals 25µm.  
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Fig. 2. Ultrastructural appearance of inclusions in the SNpc of MPTP/p-treated mice. (A) A TH-

immunoreactive membrane-bound structure is filled with a proteinaceous deposit (black arrows) 

and an electron lucent lipid deposit (asterisk). Note extracellular parallel fibers (white arrows). 

(B) Proteinaceous (black arrows) cytoplasmic deposits and lipid (asterisk) in the SNpc. Scale bar 

in B is valid for A and B, and equals 0.5µm.  
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Abstract  

Parkinson’s disease (PD) is a progressive neurodegenerative disorder whose etiology is 

not understood. This disease occurs both sporadically and through inheritance of single 

genes, although the familial types are rare. Over the past decade or so, experimental and 

clinical data suggest that PD could be a multifactorial, neurodegenerative disease that 

involves strong interactions between the environment and genetic predisposition. Our 

understanding of the pathophysiology and motor deficits of the disease relies heavily on 

fundamental research on animal models and the last few years have seen an explosion of 

toxin-, inflammation- induced and genetically manipulated models.  The insight gained 

from the use of such models has strongly advanced our understanding of the progression 

and stages of the disease.  The models have also aided the development of novel therapies 

to improve symptomatic management, and they are critical for the development of 

neuroprotective strategies. This review critically evaluates these in vivo models and the 

roles they play in mimicking the progression of PD. 

 

Keywords: substantia nigra, MPTP, 6-OHDA, rotenone, LPS, engrail, alpha-synuclein
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Introduction 

 

There are many theories on the etiology of Parkinson’s disease (PD), but most agree that 

outside of the rare familial cases, this disorder involves interactions between genetic and 

environmental factors [64].   The primary neuropathological feature is the profound loss 

of dopaminergic (DA) nigrostriatal neurons.  However, the neuropathology is not 

restricted to these neurons, for reductions in non-DA cells appear either before or 

subsequent to the substantia nigra (SN) loss [9, 10, 47].  Other prominent 

neuropathological features also emerge, including the accumulation of insoluble proteins, 

such as alpha-synuclein, in cytoplasmic inclusions called Lewy bodies in SN DA neurons 

and, in some cases, in non-dopaminergic neurons located elsewhere [1, 49].   

Investigators rely heavily on rodents to model the features of PD and provide insight 

into the mechanisms underlying the pathophysiology.  However, there is controversy as 

to which model(s) best represent(s) the progressive nature of PD and whether a model 

can demonstrate the important distinction between “preclinical” and “clinical” disease 

states. Among the many models created over recent decades, the most widely used are 

those that employ toxins, such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP), rotenone, or paraquat, but demonstrating specific and 

progressive SN cell loss has been disappointing with some protocols. Nevertheless, 

several models are able to mimic one or more of the stages of PD, particularly if partial or 

graded lesions are induced.   

We have known for decades that neuroinflammation is present in PD.  There is an 

activated microglia response and increased microglial cytokine expression in the SN of 

PD patients [8, 54]. While the presence of reactive microglia in humans was initially 
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thought to be a consequence of ongoing neuronal degeneration, we now believe that the 

microglia contribute to neurodegeneration [87].  Thus, inflammation-based models have 

been created.  Lipopolysaccharide (LPS), an endotoxin derived from the cell wall of 

gram-negative bacteria, is a potent inducer of inflammation, a powerful activator of 

microglial cells, and can be used to model neuroinflammation in PD [133].  Progressive 

features have been demonstrated in some of these models. 

Despite recent efforts to develop progressive toxin- or inflammation- based protocols, 

mouse or rat models created through the expression of genetic mutations may prove to be 

ideal for modeling disease progression. Indeed, progressive behavioral deterioration, 

increasing pathology with age, and alterations in motor function that manifest 

“subclinical” deficits have been demonstrated. The extent to which they reproduce many 

hallmarks of PD and the mechanisms at work in the sporadic forms of the disease vary 

greatly. Importantly, a few mouse lines exhibit non-progressive cell loss suggesting they 

do not reliably reproduce pathophysiological mechanisms of PD. This stresses the need to 

examine phenotypes at different ages.   

In this review, we will discuss the ability of all these models to replicate the 

progression and extent of DA nigrostriatal loss found in PD and discuss the challenges 

and caveats of using them as models of preclinical or advanced disease states.  

 

PD Models:  Acute or Chronic Delivery of Neurotoxicants 

 

Many different toxins are used to generate DA degeneration.   Most are able to potently 

inhibit Complex I or enhance the production of reactive oxygen species (ROS) through 

their effect on mitochondria.  Some specifically target the DA neurons through 



 20

preferential uptake by transporters.   An emphasis of recent research has been on the 

creation of models where exposure is chronic and damage occurs progressively to mimic 

human PD.  As such, these models can be valuable to define early and late processes 

associated with neuronal degeneration and evaluate neuroprotective strategies during mid 

or late stage degeneration, which is when therapy in PD patients is initiated.  

 
6-Hydroxydopamine 
 
The neurotoxin, 6-OHDA, is structurally similar to dopamine and norepinephrine (NE) and has a 
high affinity for the plasma membrane transporters of these catecholamines [11].  Once inside 
the neurons, it is readily oxidized and produces hydrogen peroxide and paraquinone, both of 
which are highly toxic [103].   This toxin does not readily cross the blood-brain-barrier, but when 
administered directly in the brain, it specifically kills DA and NE neurons and their terminals 
[58, 61].   Dismethylimipramine injected systemically before 6-OHDA protects NE neurons [11]. 
The degree of loss of DA neurons and their striatal terminals is dependent upon the location and 
dose of the toxin, as well as the survival time following the lesion (table 1).  However, this toxin 
does not produce extra-nigral pathology or Lewy body-like inclusions [22, 70]. 

6-hydroxydopamine is generally administered unilaterally to the SN, medial forebrain 

bundle (MFB) or striatum.  Following delivery of 6-OHDA to the ventral midbrain, most 

concentrations destroy the SN DA cells within a few hours, and before the striatal 

terminals disappear [59], but when injected into the MFB, striatal terminals degenerate 

first, followed by DA cell death (table 1; [138].   Dopaminergic neurons in the ventral 

tegmental area (VTA) are virtually unaffected, which is similar to DA loss in PD [45].  

Some of the earliest work with this toxin introduced it (25-200µg) intracisternally, which 

reduced brain DA levels by 70% and NE by 75% [11]. More recent investigations have 

used injection concentrations of 4-8µg/µl of the toxin in the SN or MFB.  These latter 

doses rapidly reduce striatal DA levels by 90% percent and produce a nearly complete 

destruction of SN neurons and striatal tyrosine hydroxylase (TH)-immunoreactive 

terminals [45, 122, 138]. Interestingly, Stanic and colleagues [115] found that by16 

weeks after a partial SN lesion (less than 75%), the striatum is completely re-innervated 
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by TH-immunoreactive fibers and the turning bias demonstrated by amphetamine 

normalizes (see below), indicating that only large lesions (greater than 75%) can 

permanently destroy the nigrostriatal pathway.   

Among the motor tests used following 6-OHDA lesions, the ‘gold standard’ measures 

the magnitude of nigrostriatal loss and involves injecting the rat with apomorphine or 

amphetamine and counting the number of rotations [124].  The rotational tests are 

complex in that DA uptake inhibitors induce ipsilateral rotation, whereas DA agonists 

produce contralateral rotation [71].  Systemic injection of levodopa induces a robust 

contralateral rotation as does the receptor agonist, bromocriptine [99, 124].  Because the 

6-OHDA lesion is unilateral, animals show asymmetry in the cylinder and adjusting step 

motor tests [106].  Therefore, a large 6-OHDA lesion administered to the MFB produces 

an excellent model of late stage PD and has often been used to screen pharmacotherapies 

for symptomatic relief.  Nevertheless, recent work has created 6-OHDA models of earlier 

stages of PD, using graded doses of toxin into the MFB (1, 2 or 4 µg/µl) and 

demonstrating abnormal locomotion, balance and posture [122].  Indeed, this model may 

be more effective in detecting motor abnormalities than other ‘bilateral’ toxin models, 

because the unilateral nature of the lesion forces a rat to shift its weight abnormally for 

locomotion and balance, thereby creating quantifiable deficits that are analogous to many 

seen in PD [60].  Moreover, PD often begins as a unilateral disorder progressing rapidly 

to bilateral symptoms, and the 6-OHDA model may recapitulate early motor signs, 

especially with a partial lesion.  

When 6-OHDA is injected in the striatum, the loss of DA nigrostriatal pathway is 

more progressive that with injections in other locations, even though it is dose-dependent 

[97].  A large toxin dose (20µg) into the striatum reportedly destroys SN neurons slowly 
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over weeks reaching a maximum cell loss by 16 weeks post-lesion [105]. Fleming and 

colleagues [30] gave ascending doses of 6-OHDA to the striatum through a unilateral 

indwelling cannula over 14 days. They were able to induce a 35% DA cell loss over this 

period and measure subtle, but significant, behavioral impairments suggesting that this 

method of delivery produces a progressive, perhaps preclinical, parkinsonism.  

 

MPTP 

 

The identification of MPTP, a synthetic heroin that kills DA neurons, led to it 

becoming among the most widely used toxins to mimic the hallmarks of PD [38].  This is 

because the toxic metabolite, MPP+ is a potent Complex I inhibitor in DA neurons and 

postmortem PD brains show Complex I damage [107].   Indeed, MPTP models have been 

most useful in studies of the molecular changes that underlie mitochondrial dysfunction 

[22, 24]. 

In rodents, MPTP is delivered systemically, either i.p. or s.c., and with repeated 

injections.  Rats are not susceptible to the toxin and MPTP potency varies among mouse 

strains [108]. Despite this, frequent injections and large doses, which are often required to 

produce significant DA depletion in mice [114], are associated with high mortality and 

may not produce large scale cell death [48, 95].   This toxin kills DA neurons rapidly at 

first (table 1), but if injected over time, continues to cause cell death [6].   

Three MPTP protocols, with some variation, are widely used.  The acute protocol 

generally involves 4 injections in one day at 2 h intervals.  Subacute (or subchronic) 

administration is a once daily injection over 5-8 days [63, 95].  One chronic regimen 

utilizes repeated treatments over 5 weeks and requires the co-administration of the 
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adjuvant probenecid to retard the renal clearance of the toxic metabolites of MPTP [73, 

95].  For all these protocols, SN TH immunoreactive neurons disappear rapidly, but this 

loss may not reflect actual DA cell death if neurons are counted shortly after treatment, 

since MPTP down-regulates TH gene expression [134].  In the past few years, the 

introduction of unbiased stereology to count the TH-immunoreactive and the Nissl-

stained neurons at least 7 days following any MPTP treatment has provided better 

estimates of DA cell loss for these models.  Thus, a single injection of MPTP (30 mg/kg) 

induces a 20-30% loss of DA neurons [16], a modified acute paradigm of 2 injections/day 

over 2 days leads to a 35% loss [62], and 4 injections kill approximately 50% of the 

neurons [28]. The subacute regimen over 8 days produces a 24% loss of DA neurons 

[63].  In addition, there is stereological evidence that the subacute protocol leads to a 

strong recovery of the DA neurons over time [95], suggesting that the toxic insult with 

this regimen is insufficient for permanent destruction of the nigrostriatal pathway.   

The chronic MPTP (plus probenecid) regimen produces a rapid but more progressive 

loss of SN DA neurons when compared to other MPTP protocols [95]. Within a week 

after this regimen, 50% of SN DA neurons have been lost and up to 70-80% have 

disappeared by 3 weeks post-treatment; The latter loss can still be demonstrated 6 months 

later [15, 79, 95].  Thus, this chronic regimen provides a short preclinical ‘window’ 

following toxin administration for the introduction of neuroprotective strategies (table 1).  

Accompanying DA loss is a reduction in concentrations of dopamine and TH-

immunopositive fibers throughout the dorsal striatum, with a sparing of the nucleus 

accumbens.  Small granular inclusions that contain alpha-synuclein, have been seen in 

DA SN neurons and limbic cortical cells between 3 and 24 weeks post-MPTP treatment 

[88, 90].   



 24

Overall, the MPTP-treated mouse models are disappointing in that DA neurons die so 

rapidly and there is little progressive loss of the nigrostriatal DA pathway.  Nevertheless, 

the pattern of DA terminal loss in the striatum replicates that of PD.  Extra-nigral 

pathology has been demoonstrated in reduced levels of monoamines other than dopamine 

[48, 131] and the inclusions in cortical regions [90].  

In terms of motor deficits, the different MPTP protocols have also been disappointing 

[89]. The Rotarod and open field locomotion tests have been widely employed but are 

only effective if they are administered shortly after treatment when the mice are still 

intoxicated by MPTP.  Mice tested later sometimes show hyperactivity and no deficit on 

the Rotarod [89].  Nevertheless, more sensitive measures, such as gait analysis, or the 

pole or grid tests, have been able to detect DA loss as low as 50% [89].  Unfortunately, 

motor deficits do not correlate well with the degree of DA neuronal loss, striatal DA 

levels or the dose of MPTP [101]. 

 

Intraventricular MPP+ 

 

MPP+, the toxic metabolite of MPTP and a Complex I inhibitor, is an excellent substrate 

for the DA transporter, which explains its selectivity towards DA neurons.  Systemic 

administration of MPP+ does not damage central DA neurons, because it does not readily 

cross the blood brain barrier due to its charge.   However, its direct infusion into the brain 

effectively destroys much of the DA nigrostriatal pathway.  A chronic rat model has been 

developed which involves the continuous delivery of MPP+ for 28 days via an osmotic 

minipump that delivers the toxicant to the left lateral cerebral ventricle [137, 139]. This 

model is unilateral in order to avoid the moribund condition that arises with extensive 
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bilateral loss of DA neurons.  This MPP+ treatment produces a dose-dependent, unilateral 

loss of striatal DA and TH on the side of the infusion.  At low MPP+ doses (0.086 and 

0.142 mg/kg/day), striatal DA is selectively reduced by 37% and 53%, respectively.  

While higher MPP+ doses (0.432 and 0.960 mg/kg/day) produce a greater DA loss (up to 

90%), they also cause significant reductions in serotonin levels.  At 0.142 mg/kg/day, 

there is a progressive loss of DA neurons. At 28 days after initiation of MPP+ treatment, 

SN DA cells are reduced by 35%; at 42 days, cell loss is further reduced to 65% in the 

ipsilateral side.  On the contralateral side, DA cell number was similar in control animals 

and MPP+ animals evaluated at 28 days.  At 42 days, in the contralateral side, there was a 

non-significant reduction in DA cell number (approximately 40%), findings, which 

indicate there may be delayed contralateral DA cell loss.  These latter findings need to be 

further investigated because if a delay in contralateral DA loss occurs, this would better 

model the human condition in which unilateral motor deficits seen in the early stage of 

PD is replaced by bilateral deficits as the disease progresses.  Also, at the latter time 

point, many surviving DA neurons are silver-stained, indicating ongoing degeneration.  

Other pathological findings include striatal and SN microglial activation and striatal 

inclusion bodies that immunoreact for alpha-synuclein and ubiquitin.  One of the caveats 

is the apparent lack of inclusion bodies in the SN.  However, upon ultrastructural 

examination of SN DA neurons, swollen and abnormal mitochondria with electron dense 

material are observed, reminiscent of defective mitochondria seen in other models and in 

cybrids from PD patients [37, 88, 121].  Whether SN inclusions develop with longer 

MPP+ exposures or survival times remains to be determined.  No behavioral assessments 

were performed in these studies so we cannot correlate DA loss with motor deficits.  

While the model is technically challenging, it produces a reliable response with low 
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variation, thus making it appealing for testing neuroprotective strategies during the phase 

of toxic insult and ongoing degeneration, the stage at which PD patients present with the 

disease.    

 

Systemic Rotenone 

 

Several epidemiological studies link pesticide exposure to PD [3, 25].  Rotenone, a 

naturally occurring pesticide used in the environment, is a Complex I mitochondrial 

inhibitor that has been used to generate the first chronic PD model: rats receive rotenone 

via osmotic minipumps for up to 5 weeks, i.v. or s.c. [5, 53, 110]. Rotenone is lipophillic, 

readily crosses cell membranes and easily penetrates the blood-brain-barrier.  At 2-3 

mg/kg/day, it produces a loss of striatal DA terminals followed by progressive 

degeneration of SN DA neurons.  Notably, dying DA neurons contain cytoplasmic 

inclusions, which like Lewy bodies, are immunopositive for alpha-synuclein and 

ubiquitin.  Other pathological features include elevations in oxidative damage, 

microgliosis and increased iron deposits.  Behaviorally, the rats display prominent motor 

deficits [36]. The progressive nature of degeneration and presence of neuronal inclusions 

are advantages of the rotenone model over more acute administration of other toxins. 

However, even with identical experimental conditions, rotenone causes either selective 

damage to DA neurons or more widespread cell loss [5, 110].  Thus, while the DA 

neurons may be most vulnerable to rotenone exposure, other unrelated populations can be 

damaged as well, and the high variability limits the utility of the model [36, 140].  An i.p. 

route of administration may circumvent these problems. Alam and Schmidt [2], using 

chronic daily i.p. injections of rotenone (1.5-2.5 mg/kg/day for 60 days), observed 
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reduced striatal DA content and TH immunoreactivity (immunoblots), and levodopa-

responsive motor impairments.  More recently, Greenamyre and colleagues have shown 

that rats treated i.p. (daily) with a 2.75-3.0 mg/kg dose, display other features of PD, 

including SN accumulation and aggregation of alpha-synuclein, microgliosis, iron 

accumulation, loss of enteric neurons and cardiac sympathetic denervation (Greenamyre, 

personal communication). These animals show less variability compared to the osmotic 

pump delivery paradigm, thus making this an attractive model for therapeutic testing in 

animals demonstrating early and late stages of parkinsonism (table 1).   

 

Paraquat and Maneb 

 

Other environmental toxins known to disrupt mitochondrial respiration and produce ROS 

have been systemically administered to produce mouse PD models (table 1; [96]).  

Among these is paraquat (PQ), a herbicide that crosses the blood-brain-barrier. Its 

neurotoxicity can be attributed to redox cycling and ROS formation.  Within cells, PQ is 

transported into mitochondria by a carrier-mediated process [21], where it is reduced by 

Complex I forming a PQ radical capable oxidatively damaging the mitochondria.  Thus, 

whereas MPP+ and rotenone directly inhibit Complex I function, PQ indirectly disrupts 

mitochondrial function via intra-mitochondrial ROS formation through Complex I 

interactions with PQ. Various investigators have demonstrated small but significant 

losses of SN DA neurons with PQ [12, 36, 69, 85, 93] and up-regulation and aggregation 

of alpha-synuclein [29, 83].  However, studies have yet to demonstrate progressive DA 

cell loss or motor deficits.  
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Maneb (manganese ethylenebisadithiocarbamate), a fungicide that inhibits glutamate 

transport and disrupts DA uptake and release [125, 126], is generally co-administered 

with PQ subchronically to enhance toxicity. When combined with maneb (30mg/kg), PQ 

(10mg/kg) at 1-2 injections/week (3-6 weeks) destroys 50% of SN DA neurons in young 

mice [118]. In older mice (18 months of age), combined PQ/maneb treatment produces a 

more progressive DA cell loss, i.e. approximately 75% at 2 weeks and 88% at 12 weeks 

[117]. Studies in older rats have shown that they are very sensitive to the toxic effects of 

the combination PQ/maneb at the same doses used in younger mice [20, 102].  Loss of 

DA neurons, motor impairment and microgliosis, which are found in both young and old 

rats, mimic different stages of clinical PD.  However, a potential disadvantage of 

PQ/maneb treatment for older rats is systemic lung toxicity, which can be lethal [102].   

 

PD models: acute and chronic inflammation 

 

Neuroinflammation is mediated predominately by microglia, the resident immuno-

competent and phagocytic cells within the CNS.  Microglia, representing 5-20% of brain 

cells [7, 26], exhibit, in their basal resting state, a ramified morphology that monitor the 

environment (reviewed in [133]). When activated, microglia undergo dramatic 

morphological changes, converting to an amoeboid state with enlarged cytoplasmic 

processes capable of phagocytosis.  Activated cells also produce pro-inflammatory 

molecules such as chemokines, cytokines, nitric oxide and ROS used for clearing toxic 

debris [4, 7, 80].  The phagocytic activity is beneficial during neuronal development and 

in injury, as this process effectively removes cellular debris, but dysregulation or 

excessive activation, and ill-controlled ROS formation, can lead to an oxidative burden 
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for neurons.  Microglial-induced inflammation can be sustained and progressive [41, 42, 

86]. The observation that microgliosis persists for years in humans and non-human 

primates following acute exposure to MPTP [72, 86] indicates that the inflammatory 

response persists in the absence of continued exposure to the neurotoxicant, a feature 

important for understanding cell death in PD.   

 

Acute Intracerebral LPS 

 

Intracerebral injections of LPS (5 or 10 µg) into the cortex, hippocampus, striatum or SN 

of rats enhances the death of only SN DA neurons, possibly because microglial cell 

density in the SN is 4-5 times higher than in other regions [41, 52, 65].   LPS is now well 

established as an effective initiator of DA neurodegeneration.  Acute intra-nigral or 

supra-nigral LPS injections (2 µg) produce a rapid activation of microglia (within 24 h) 

and loss of striatal dopamine (by 4 days) accompanied by loss of SN DA neurons (by 21 

days) [13, 56].  While striatal dopamine is rapidly reduced, no further decline is seen up 

to 1 year, indicating a permanent lesion but a lack of progression [52]. Although acute 

LPS administration produces a rapid and intense microglial response, microglia 

morphology reverts to normal by 30 days, indicating a short-lived response and not a 

prolonged or progressive state of activation [56]. Rats exposed acutely to LPS rapidly 

lose TH-immunoreactive neurons in the SN and show unilateral behavioral deficits as 

evidenced by ipsiversive circling following amphetamine administration [56].  Others 

have seen a more progressive loss of TH-immunoreactive neurons months after a single 

acute insult [98]. 
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Chronic Intracerebral LPS 

 

To overcome the short-lived microglial response and develop a more progressive PD 

model, LPS has been administered chronically to rats.  LPS is infused via stereotaxically 

implanted cannulae just above the SN using osmotic minipumps [41].  This exposure (5 

ng/h) for 2 weeks produces a rapid microglial activation (within 3 days) and signs of 

oxidative stress that persists for at least 8 weeks.   The activation precedes DA cell death, 

which is not significant until 6 weeks into the study, but is progressive (approximately 

10%, 40% and 60% at 4, 6 and 10 weeks, respectively, after initiation of exposure).   

While this model is attractive in that it presents with progressive DA cell loss, it remains 

to be determined if motor symptoms accompany the cell loss, alpha-synuclein-positive 

inclusions in DA neurons form or extra-nigral pathology occurs.  Moreover, the 

techniques pose a technical challenge.  

 

Acute Systemic LPS 

 

A recent report describes the effects of a single systemic injection of LPS (5 mg/kg i.p.) 

in a mouse.  Brain TNF� mRNA and protein rapidly increase (by 7,336% and 653%, 

respectively) within 1 hr of administration and remain elevated for 10 months [98].  

Likewise, microglia in several brain regions (hippocampus, cortex, SN) become activated 

within a few hours of administration.  However, DA cell loss is delayed but is 

progressive.  Significant SN DA cell loss is not observed until 7 months of age (23% 

loss) with further reductions seen at 10 months of age (47% loss).  Unfortunately, striatal 

DA changes and alpha-synuclein aggregates or other SN cell inclusion bodies have yet to 
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be investigated. Nonetheless, the studies indicate that a single exposure to a systemic 

inflammogen initiates a self-propagating response, which ultimately leads to the loss of 

SN DA neurons.  Interestingly, progressive DA cell loss occurs in mice given a single 

systemic exposure to LPS, which contrasts with the lack of progressive DA neuron loss 

in rats provided with a single, acute, intra-nigral LPS infusion [13, 52, 56].  If findings in 

mice are confirmed, this model would be attractive, especially if inclusions form and 

behavior can be correlated with cell loss.  

 

Intrauterine LPS 

 

Carvey and colleagues have proposed that prenatal exposure to LPS not only creates a 

neuroinflammatory response but also disrupts the normal development of DA neurons.  

They studied the effects of prenatal LPS exposure on DA cell development and postnatal 

DA cell number in rats [77, 78].  In utero exposure to LPS following a single injection of 

the endotoxin into gravid female rats causes a significant (29%) reduction in striatal DA 

and 27% and 22% reduction in SN DA cell number in offspring killed at 21 days or 18 

months, respectively, findings that suggest that prenatal infections could potentially be a 

risk factor for PD [76, 77].  Moreover, rotenone (1.25 mg/kg/day, 14 days, intrajugular) 

injected at 18 months of age to rats exposed prenatally to LPS, exerted a synergistic 

effect on DA cell loss.  There was a significant reduction in SN DA neurons (39%), 

findings that suggest a pre-existing pro-inflammatory state can be a risk factor for 

environmental toxins [76].  Finally, the data demonstrate that exposures to different 

toxicants, separated by months or years, can synergize in their detrimental actions on DA 

neurons.      



 32

    

PD models: genetic manipulations 

 

Three types of genetic models of PD have recently been developed. First, mouse models 

based on the deletion of genes important for the development or maintenance of DA 

neurons or their phenotype [55, 109, 113]. These mice exhibit DA cell loss at various 

times in their life, thus reproducing a cardinal feature of PD. However, they fail to 

reproduce the broad extra-nigral pathology and other pathological landmarks such as 

Lewy bodies. Furthermore, the relevance of these genetic mutations to PD is not fully 

established. Second, mouse or rat models based on expression or deletion of genes known 

to cause familial forms of PD [31]. Although these mutations are very rare, they point 

towards mechanisms that are most certainly related to PD in humans. The relevance of 

these specific genes or mutations to sporadic PD, however, is only clearly established for 

alpha-synuclein, the gene in which the first PD-causing mutations were discovered [19]. 

Finally, a third class of genetic models is based on virally mediated expression of genes 

or mutations known to cause familial PD, usually in nigrostriatal DA neurons [123]. 

These models produce a more acute form of the disease than transgenic or knock out 

animals. Nevertheless, they are valuable because they often exhibit neuronal loss, a 

feature that has been elusive in genetically engineered mice expressing PD-causing 

mutations.  

 

Genetically engineered mice: mutations leading to nigrostriatal DA cell loss  

 

Two models have achieved a progressive, post-natal loss of SN DA neurons:  
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1) Pitx3 -/- mice:  These mice have a spontaneous mutation in the homeobox 

transcription factor Pitx3 and were originally identified based on a small eye phenotype 

(and blindness) and named aphakia mice. After the role of Pitx3 in DA development was 

identified, several groups discovered that these mice also lose nigrostriatal DA neurons 

early during post-natal development [55, 91, 111, 127].  Aphakia mice show behavioral 

deficits that are reversed by levodopa [55, 127]. Interestingly, mesolimbic DA neurons 

are resistant to Pitx3 loss, similar to what is observed in PD. The relevance of this 

mutation to sporadic PD remained elusive until recent evidence that polymorphism in the 

Pitx3 gene represents a risk factor for PD [39]. Nevertheless, the loss of DA neurons is 

the only PD feature reproduced in these mice; therefore, they may be useful to study 

survival factors for DA neurons or symptomatic treatments to counteract the 

consequences of striatal DA loss but can hardly be considered a model of the disease. 

Furthermore, they lack the characteristic progressive nature of sporadic PD, in which DA 

cell loss begins in adulthood.  

 

2) Engrailed knock-out (KO) mice: Engrail 1 is primarily expressed in mesencephalic DA 

neurons, whereas engrail 2 is primarily expressed in cerebellum. To avoid compensation 

by one engrailed gene for the other, investigators generated engrail 1+/- on a background 

of engrail 2 -/-(knocking out both forms of engrail is embryonic lethal) [109]. These mice 

show a progressive loss of nigrostriatal DA neurons but also cerebellar pathology, which 

limits their use in behavioral assays of nigrostriatal dysfunction. Another line that lacks 

one copy of engrail 1 with preserved engrail 2 shows more specific nigrostriatal DA cell 

loss without cerebellar pathology [113]. DA cell loss is progressive but it starts during 

late post-natal development, i.e. probably much earlier than in sporadic PD. These mice 
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show behavioral deficits, including marked affective disorders, a frequent symptom of 

PD.  The search for the relevance of engrailed mutations to PD remains ongoing.  

 

Genetically engineered mice that express mutations of familial PD  

 

Five mutations (alpha-synuclein, Parkin, PINK1, DJ1, and LRRK2) have been linked to 

familial PD [50, 68].  

 

1) Alpha-synuclein overexpressing mice:  Single point mutations or gene multiplication 

of alpha-synuclein lead to familial forms of PD [74]. The latter indicates that increased 

levels of wild-type alpha-synuclein can cause PD. This establishes an important link with 

sporadic PD in which alpha-synuclein is not mutated but accumulates in Lewy bodies or 

neurites in a broad range of affected neurons, including but not limited to nigrostriatal 

DA neurons [47]. Many lines of mice expressing mutations in alpha-synuclein have been 

generated over the last decade [19]. They differ in the promoter used, which is critical in 

determining the relevance of the resulting line in modeling PD, and whether the transgene 

encodes wild-type or mutated alpha-synuclein. The TH promoter was used to reproduce 

the loss of catecholaminergic neurons found in PD. However, the restricted expression of 

the transgene does not mimic the broad alpha-synuclein pathology that characterizes the 

human disease. A different approach is to use a promoter that confers broad neuronal 

expression. The prion promoter has been particularly successful in generating models of 

amyotrophic lateral sclerosis because it drives high levels of transgenes in motoneurons 

[43, 75]. Accordingly, mice overexpressing alpha-synuclein under the prion promoter 

exhibit motor neuron pathology, which is different from PD. Therefore, these mice 
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provide information on mechanisms of alpha-synuclein-driven cell death in vivo, but they 

would not be useful to identify the specific, cell autonomous mechanisms in PD. 

Furthermore, the motor deficits cannot be attributed to nigrostriatal dysfunction or other 

parkinsonian symptoms.  

Other promoters used to over-express alpha-synuclein in mice include PDGFbeta and 

Thy-1 [17, 84, 100, 128]. Both confer broad neural expression but the pattern of 

transgene expression varies [51]. The Thy-1 promoter drives higher levels of transgene 

expression in the SN pars compacta than the PDGFbeta promoter, thus better mimics the 

breadth of pathology observed in sporadic PD. Some lines using the Thy1 promoter 

display motor neuron pathology [128], but others do not, despite high levels of transgene 

expression [100]. The latter mice present progressive sensorimotor deficits starting as 

early as 2 months of age and worsening with age [33].  These deficits are detected with 

behavioral tests that are sensitive to nigrostriatal dysfunction [55], however they occur in 

the absence of DA cell loss, and accordingly, are not reversed by levodopa [34].  

Therefore, these deficits do not correspond to the symptoms of parkinsonism observed in 

manifest PD but may represent early alterations in motor function that remain 

“subclinical” in patients. Indeed, these mice show olfactory and autonomic deficits 

similar to symptoms often observed before the onset of classical neurological symptoms 

in PD [32, 35]. In addition, they exhibit proteinase K resistant alpha-synuclein 

aggregates, which increase in size and become widespread with age (unpublished 

observations, [29]). With standard housing, these mice do not lose DA neurons up to 18 

months of age. Nevertheless, the progressive motor deficits indicative of neuronal 

dysfunction, non-motor symptoms, and progressive pathological anomalies that are 

strongly reminiscent of early stages of PD, provide the opportunity to analyze the role of 
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alpha-synuclein accumulation in PD and to test novel therapeutic interventions to stop 

disease progression.  

Few lines of alpha-synuclein transgenic mice show prominent loss of DA neurons, 

even though some show decreased striatal DA levels [84, 120]. One line expresses a 

doubly mutated alpha-synuclein, combining two mutations that lead to PD in humans, 

under the TH promoter [119]. Interestingly, another mouse, expressing a truncated form 

of alpha-synuclein, shows profound loss of DA but, disappointingly, this phenotype is 

present in young animals and does not increase with age, thus failing to provide a useful 

model for PD progression [130].  

In conclusion, among the many lines of mice developed to mimic the alpha-synuclein 

pathology observed in sporadic PD, only a few have emerged that provide useful 

information despite some shortcomings. We are still lacking a model that reproduces both 

the broad pathology of PD and a robust progressive loss of nigrostriatal DA neurons. The 

information provided by existing models now informs further efforts to generate such 

model.  

 

2) Parkin, PINK1 and DJ1 KO mice: Many mutations in the gene encoding parkin cause 

a significant portion of early onset familial PD [132].  Most of these mutations likely 

cause a loss of function in parkin, a E3 ubiquitin ligase, probably leading to proteasomal 

dysfunction [50]. One parkin mutation (Q311X) however causes DA cell loss in 

Drosophila in a dominant manner and PD may occur in some patients heterozygous for 

parkin mutations [68, 104].  

Two separate lines of mice with exon3 mutations leading to a lack of protein 

expression show progressive sensorimotor dysfunction without DA cell loss [44, 57], 
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whereas one line with an exon7 deletion showed anomalies in paired-pulse inhibition and 

a non-progressive loss of NE neurons in the locus coeruleus [129]. Other lines showed no 

behavioral deficits [94], while others show non-motor deficits [140]. Exon3 deletion mice 

show evidence of oxidative stress in proteomics studies [92]. In contrast to these lines, a 

more recent model shows not only progressive motor dysfunction but also DA cell loss at 

late ages [82]. These mice are transgenic for Q311X parkin, suggesting a dominant effect 

of this mutation.  

In flies, both parkin and PINK1 mutations cause similar alterations in mitochondria 

[27]. This phenotype, however, is not observed in mice. Nevertheless, PINK1 KO mice 

show a decrease in evoked DA release in the striatum and deficits in corticostriatal 

plasticity that are reversed by DA agonists, suggesting they are secondary to the decrease 

in evoked DA release [67]. Indeed, multiple observations suggest that deficits in DA 

release machinery may be a primary mechanism eventually leading to the SN DA cell 

demise [116]. Examining the progression of these pathological phenotypes in mice 

should provide insights into the progression of DA neurodegeneration in humans.  

DJ1 mutations cause decreased resistance to oxidative stress in cells, flies, and mice 

[27]. The association of these mutations with recessive forms of familial PD supports a 

long suspected role for oxidative stress in PD pathophysiology [46]. DJ1 KO mice, 

however, have little phenotype and do not develop DA cell loss [135], although some 

lines show an increased sensitivity to PQ [136].  

 

3) LRRK2 mutations: A late onset familial PD can be caused by a mutation in the gene 

that encodes a leucine-rich repeat kinase 2 (LRRK2) [40].  It appears that cell toxicity of 
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mutant LRRK2 is dependent on its kinase activity [112] and transgenic mouse models are 

currently being developed. 

 

Viral delivery of genes related to PD-causing mutations 

 

The lack of DA cell loss in most lines of genetically engineered mice expressing PD-

causing mutations may be due to a number of factors, including the development of 

effective compensatory mechanisms. To overcome this problem, a number of models 

have been developed based on the acute delivery of virally expressed genes into the SN 

[123]. Because this requires stereotactic infusions, the rat has been most often used, 

although it is possible to adapt the technique to mice. After overexpression of alpha-

synuclein either with a lentivirus or with an adeno-associated virus into the SN, rats 

develop a progressive loss of DA neurons and associated behavioral deficits [66, 81]. 

Thus, these models are more effective in modeling the hallmark nigrostriatal 

degeneration of PD than most currently available genetically engineered mice. However, 

the local delivery of the genes does not reproduce the extra-nigral pathology and does not 

model the progressive development of this pathology throughout the nervous system.  

 

Conclusions 

Over the past 3 decades, there has been impressive advances in creating rodent models 

that demonstrate the progressive nature of PD.  No model is perfect, but rodents can 

demonstrate many pathophysiological features of PD and their use has increased our 

understanding of the mechanisms underlying this neurodegenerative disorder [22] and 

opened doors to exploration of neuroprotective and neurorestorative strategies [23].   
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Rodents have drawbacks, such as their short life span or their quadripedal locomotion and 

very different behavioral repertoire that preclude replication of some, typical PD motor 

deficits [14, 89].  Nevertheless, toxin- and inflammation-induced models have been 

repeatedly refined and new transgenic mice developed, so that more ‘progressive’ rodent 

models are now available.  For example, in terms of toxin models, the location (striatum 

rather than SN or MFB) for delivery of 6-OHDA seems to be quite important for slowing 

DA neuronal loss in the SN [105], and graded injections of this toxin can mimic 

preclinical or clinical stages [122].  Moreover, recently developed motor tests have 

demonstrated that the hemiparkinsonian rat can be an exceptional model of stepping, 

postural and balance deficits of PD [60].  The MPTP models are clearly the most widely 

employed but are disappointing in replicating PD symptoms, due to the lack of 

progressive cell death or correlated motor symptoms of PD.  Nevertheless, these models 

have been very useful for exploring the molecular basis for mitochondrial dysfunction 

[22].  Intracerebroventricular (ICV) administration of MPP+, systemic daily injection of 

rotenone, or chronic ICV LPS produce progressive DA neuron loss and, in many cases, 

behavioral deficits that replicate those seen in PD [2, 41, 137, 139].  However, the latter 

approaches are all technically challenging. 

Genetic models of PD have opened new perspectives for modeling and understanding 

the progression of PD but the advantages and disadvantages of each approach must be 

carefully considered.  It is important to distinguish models that reproduce the progressive 

degeneration of nigrostriatal DA neurons from those that model disease progression in 

the whole organism. Genetic modeling of nigrostriatal degeneration complements toxin-

induced neuronal loss by reproducing insults that are mechanistically linked to PD in 

humans. These models can provide useful information on stages of neurodegeneration, in 
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particular on the interplay between protective and detrimental mechanisms, which are 

likely to contribute to the late onset of the disease and the effect of aging, a main risk 

factor for PD. For example: does neurodegeneration require age-related failure in 

autophagy or the accumulation of mitochondrial mutations? Are defense mechanisms, 

such as anti-apoptotic or anti-oxidant genes upregulated prior to the onset of cell death? 

Finally, the growing number of models exhibiting DA cell loss due to genetic mutation 

not yet known to be associated with PD, point towards new avenues of research for 

genetic risk factors for the disease.  

Few models so far reproduce the progression of extra-nigral pathology that 

characterizes PD and is present both in the pre-manifest (before the classical motor 

symptoms appear) and in the manifest phase of the disease. KO mice expressing 

mutations that cause recessive forms of familial PD have progressive behavioral deficits 

but do not show alpha-synuclein pathology as in sporadic PD. The closest models to 

sporadic PD so far are based on the over-expression of alpha-synuclein under a broadly 

expressed neural promoter such as Thy-1. Although they have insoluble alpha-synuclein 

inclusions, they fail to exhibit true Lewy bodies. Nevertheless, these mice show 

progressive sensorimotor deficits as well as decreased olfaction and autonomic 

dysfunction [19]. Because these behavioral deficits occur in the absence of DA cell loss 

these mice provide a model of pre-manifest PD but the absence of DA cell loss limits 

their use as a model of manifest PD. They show a broad pattern of alpha-synuclein 

aggregates that is reminiscent but not identical to the progressive pathological stages of 

PD. Clearly, the use of the endogenous alpha-synuclein promoter would be necessary to 

more faithfully reproduce this pattern, but high levels of transgene expression may need 

the use of bacterial artificial chromosome (BAC) technology. Based on the information 
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available form existing models, sophisticated genetic techniques such as specific 

expression or removal of the transgene in defined brain regions with Cre-Lox 

technologies, and the expression of highly pathological forms of alpha-synuclein, for 

example truncated and/or phosphorylated [18, 75, 120], should permit a more 

mechanistic analysis of PD pathology progression in a genetic animal model.  
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Table 1. Features of PD recapitulated by systemic or central administration of 
toxins 

toxin time to greatest DA 
cell loss 

striatal loss of 
dopamine 

advantages caveats 

 
6-OHDA, 
into nigra or 
MFB 

 
42 h 

 
dose-dependent loss 
of DA innervation 

 
1) full DA depletion 
of nigrostriatal 
pathway 
2) mimics late-stage 
PD; graded lesions 
mimic earlier stages 
3) test therapeutic 
strategies 

 
1) not  progressive 
2) resembles 
axotomy 
3) no inclusions 
4) no extra-nigral 
pathology 

 
6-OHDA, 
into striatum 

 
16 wks 

 
circumscribed loss of 
tyrosine hydroxylase 
immunoreactivity at 

injection site 

 
1) progressive DA 
cell loss 
2) produces 
incomplete lesions 
that mimic PD  

 
1) strong striatal glial 
reaction 
2) no inclusions 
3) no extra-nigral 
pathology 

 
MPTP, 
acute 

 
24 h 

 
dorsal striatum with 
sparing of nucleus 

accumbens 

 
1) inhibits complex I 
activity 
2) striatal TH loss 
mimics PD 

 
1) not progressive 
2) no inclusions  
 

 
 
MPTP, 
subacute/ 
subchronic 

 
 

24 h 

 
dorsal striatum with 
sparing of nucleus 

accumbens 

 
1) inhibits complex I 
activity  
2) test neuro-
protective regimens  

 
1) not progressive 
2) recovery of some 
DA neurons over 
time 
2) no inclusions 

 
MPTP, 
(probenecid) 
chronic 

 
3 weeks post-

treatment 

 
dorsal striatum with 
sparing of nucleus 

accumbens 

 
1) inhibits complex I 
activity 
 2) alpha-synuclein 
inclusions in DA 
neurons 
3) extra-nigral 
pathology 

 
1) initial death of DA 
neurons is rapid 
2) inclusions do not 
resemble Lewy 
bodies  

 
Paraquat 
(PQ) and 
maneb 
 

 
Within 7 days 

 
little or no 

measurable change in 
striatal DA 
innervation 

 
1) combination of PQ 
and maneb is more 
effective for DA 
depletion than PQ 
alone 

 
1) inconsistent results 
on DA loss 
2) no inclusions 
3) no extra-nigral 
pathology 

 
Rotenone, 
chronic 
pump 

 
36 days or longer 

 
dose-dependent loss 

of TH in dorsal 
striatum with sparing 

of nucleus 
accumbens 

 
1) inhibits complex I 
activity 
2) progressive DA 
cell loss 
3) alpha-synuclein 
inclusions in DA 
neurons 
4) i.p. administration 
shows extra-nigral 
pathology 

 
1) large variations in 
animal sensitivity 
2) variation in motor 
response  

 
MPP+, 

 
42 days or longer 

 
dorsal striatum with 

 
1) inhibits complex I 

 
1) no inclusions in 
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chronic 
pump 

sparing of nucleus 
accumbens 

 dose-dependent loss 
of DA innervation 

activity 
2) progressive DA 
cell loss 
3) damaged 
mitochondria 

DA neurons 
2) motor deficits have 
yet to be 
demonstrated 

 
LPS, 
acute into  
SN 

 
21 days 

 
dorsal striatum 

 
1) activated microglia  
2) rapid DA cell loss 
3) permanent lesion  

 
1) not progressive 
2) no inclusions in 
DA neurons 

 
LPS, 
chronic into 
SN 

 
10 weeks 

 
no data 

 
1) chronic activation 
of microglia 
2) progressive DA 
cell loss 

 
1) no inclusions in 
DA neurons 

 
LPS, 
acute 
systemic 

 
7—10 months 

 
no data 

 
1) chronic activation 
of microglia 
2) progressive DA 
cell loss 

 
1) no inclusions in 
DA neurons 
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